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Supersonic cooling by shock-vortex interaction 
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The subject of total temperature separation in jets was treated in Fox et al. (1993) for 
subsonic jets. When we extended this study to the case of supersonic jets, we found the 
presence of a different mechanism of cooling, an effect which does not appear to have 
been known in the past. Named the ' shock-induced total temperature separation', this 
cooling can be of much greater magnitude than the subsonic cooling treated 
previously; it is caused by the interaction of convected vortical structures near the jet 
exhaust with the shock structure of the supersonic jet. 

In studying this phenomenon, we focus our attention on overexpanded jets exiting 
a convergent-divergent nozzle. The theoretical results for the shock-induced cooling 
which are based on a linearized, unsteady supersonic analysis are shown to agree 
favourably with experiments. 

When an impingement plate is inserted, the shock-induced cooling would manifest 
itself as wall cooling, whose magnitude is significantly larger than the subsonic 
counterpart. This has implications for heat transfer not only in jets, but wherever 
vortical structures may interact with shock waves. 

1. Introduction 
In our preceding paper (Fox et al. 1993, hereafter referred to as Part 1: note that 

figure 6 of this was omitted in print, and later appeared in a corrigendum), we discussed 
the general subject of total temperature separation in vortex-dominated flows and 
applied it to jet flows in particular. This investigation was conducted in pursuit of the 
theme of vortex-induced total temperature separation, an earlier example of which had 
been presented for a wake flow (Kurosaka et al. 1987; Ng, Chakroun & Kurosaka 
1990). Specifically, in Part 1 we have shown that for a free jet, vortex rings around the 
jet separate the total temperature into two coannular regions : a region of higher total 
temperature on the inside of the jet and a region of lower total temperature towards 
the jet periphery. For an impinging jet, we furthermore showed that for small distances 
of the impingement plate from the nozzle, secondary vortical structures are formed on 
the plate by an unsteady separation of the boundary layer. This in turn induces 
secondary total temperature separation and causes a significant reduction in the 
adiabatic wall temperature. For a heated, thermally conducting plate, this translates to 
an increase in the local heat transfer rate. 

The jets treated in Part 1 were all subsonic and emanated from a convergent nozzle; 
it was observed that the magnitude of this separation in the total temperature scales 
with the square of the jet Mach number, as expected. We thought, unsuspectingly, that 
when jets became supersonic, essentially the same pattern of total temperature 
separation as for the subsonic jets would continue. 

t Present address: Solar Turbines Inc., San Diego, CA 92186-5376, USA. 
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FIGURE 1. (a) Measured total temperature profiles for a subsonic free jet. The pressure ratio of I .7 
corresponds to a Mach number of 0.9. (b) Corresponding data for the underexpanded jet with a 
pressure ratio of 7.8. 

When a circular convergent nozzle of 2.5 cm diameter is used to produce an 
underexpanded jet, however, the results are noticeably different. Figure 1 displays a 
comparison between the time-averaged total temperature distributions ( T }  for two 
free jets: (a)  for a highly subsonic jet (Po/Pa = 1.7, where Po is the reservoir total 
pressure and P, is the ambient pressure; note that the critical pressure ratio is 1.89); 
and (6) an underexpanded supersonic jet (P,/P, = 7.8). (During the tests, the total 
temperature of the jet as measured in the upstream settling chamber, T,, is held 
constant and equal to the ambient temperature, T, = 21 "C.) The radial profiles of the 
total temperature are plotted at several locations, x/d, where x is the downstream 
distance from the nozzle and d is the nozzle diameter. 

For the subsonic jet (figure 1 a), the presence of inner peaks and outer valleys in the 
profile in the near field corresponds to the aforementioned vortex-induced separation. 
The coalescence of the twin peaks into a single peak in the far field is caused by the 
entrainment of ambient fluid into the jet, which is also discussed in detail in Part 1. 
Contrast these subsonic data with the underexpanded supersonic data (figure 1 b). We 
start from the near field at x/d = 1 : the outer valleys of lowered correspond to the 
subsonic mechanism. However, the adjacent inner peaks of heating observed for a 
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FIGURE 2. Mechanism of cooling across a shock. 

subsonic jet are now almost suppressed; instead additional, sharp valleys of cooling 
occur at a slightly smaller radial distance from the centreline. As we move further from 
the nozzle, these inboard valleys move closer to the jet centreline and grow in 
magnitude; at x/d = 1.5 this cooling is more than 35 "C (ix. the minimum total 
temperature is 35 "C lower than the ambient temperature), much greater than that due 
to the vortex-induced cooling. At x/d = 2, they coalesce and form a single valley of 
cooling on the centreline, which persists further downstream, and the peaks of heating 
start to emerge. 

In search of a proper explanation for these unexpected features of supersonic jets, 
which initially baffled us, we were led to a second mechanism of total temperature 
separation unique to a supersonic flow : vortex-shock interaction or the movement of 
the shock caused by the formation and movement of vortices. This is the subject of the 
present paper. 

In general, as is well known, the total temperatures across a moving shock are not 
the same, as is evident from a coordinate transformation between stationary and 
moving coordinate systems. What may be perhaps not so lniell known is that the 
conclusion about the difference in total temperatures can also be obtained from a 
dynamical argument by appealing to the following equation used in Part 1 as a key for 
subsonic vortex-induced q separation : 

Consider, for simplicity, a normal shock, the pressure rise across which is shown 
schematically in figure 2 at two different times (here the shock thickness is deliberately 
broadened so that the pressure rise can appear as a continuous curve). The shock 
begins to move at time t = to, and has moved a small distance downstream by a time 
t = to +At.  For a fluid particle momentarily occupying the position xo, applat < 0 and 
q decreases along its pathline as the shock moves downstream. 

Returning to the present case of a supersonic jet, we can expect that every time a 
vortical structure moves downstream, it disrupts the shocks and sets them in motion : 
this could lead to a change in total temperature. Crudely speaking, then, this is the 
heart of the mechanism of total temperature change in a supersonic jet, where equation 
(1) serves as a common thread between this new mechanism and the subsonic 
counterpart treated in Part 1. To distinguish these two mechanisms, the mechanism of 
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Part 1 will be called simply 1:orte.x-induced 7; separation: separation is induced either 
by the rotary motion of fluid particles entrapped around vortices or by those particles 
entrained into the jet by vortices. The present mechanism for supersonic flows will be 
called shock-induced 7; separation. 

Needless to say, further details have to be added to the above broad-brush 
description in order to be able to answer various questions. In particular, two questions 
stand out. (i) Why does such shock-vortex interaction lead, when time-averaged, only 
to cooling? And (ii) why do the secondary valleys near the jet centreline of figure 1 (b), 
which are postulated to correspond to shock-induced cooling, move radially inward 
as the distance from the nozzle increases? 

In what follows, we address these issues. In $2, we offer an analysis based on a 
linearized unsteady supersonic approximation, where the roots of the leading shocks 
are fixed at the nozzle outlet. This corresponds to the near field of a convergent- 
divergent nozzle operated at an overexpanded condition. In $3, comparison will 
be made with total temperature profiles measured for overexpanded free jets emanating 
from a convergent-divergent nozzle, which will display features similar to figure 1 (b) 
for the convergent nozzle. The results of the analysis, though obviously idealized. seem 
to agree favourably with the experimental trends; this appears to lend support to the 
hypotheses adopted in the course of analysis. 

2. A model problem for shock movement induced by vortices 
The objective of the model problem is to analyse the shock-induced 7; change which 

is caused by the movement of an oblique shock. The shock is set in motion by the 
generation, and subsequent convection, of vortices. 

As sketched in figure 3 ,  we are interested in the motion of an oblique shock, which, 
in its undisturbed state, emanates from a point at the nozzle outlet, A :  x = 0 and r = a, 
where x is the axial and r is the radial coordinate. The following simplifying 
assumptions are to be made. 

(i) A boundary condition is imposed at r = a as a specified radial component of the 
velocity. It is subsequently chosen in such a way that the effect of the vortices is 
represented as an appropriate time-varying pressure drop. As a consequence of 
prescribing the boundary condition at r = a, the interior region of r 9 a, the domain 
of interest, is separated from r > a and the interior is rendered to a ‘duct’ problem. 

(ii) The flow in the nozzle, which is located upstream of the leading oblique shock, 
remains undisturbed, uniform, and constant. 

(iii) Downstream of the leading oblique shock, we employ linearized, unsteady and 
irrotational supersonic analysis and apply its results near the leading shock wave as an 
input to obtain the shock motion; for simplicity, and as justified in $2.4, we treat the 
disturbance as axisymmetric. From this, we calculate the shock-induced & change. 
(Here we ignore the vortex-induced change of 9 1 ,  which is the mechanism dealt with 
in Part 1.) 

(iv) In general, any unsteady disturbance generates a vortical flow field and entropy 
in addition to irrotational flow. Although in the linearized treatment all three are 
formally decoupled in such a way that vorticity and entropy drift with the stream, and 
the irrotational disturbance satisfies the convected wave equation, they are coupled at 
the shock. For a weak shock, however, the entropy and vortical flow field are of higher 
order. If we denote the steady strength of a base weak shock by t and the amplitude 
of the unsteady disturbance by 8,, then the entropy disturbance is 0 ( ~ ~ 8 ~ ) ;  for an 
oscillating wedge, where a complete solution is available (Carrier 1949), a detailed 
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FIGURE 3. Schematic of the model problem of $ 2 .  

x - m(a - r)  = 0 

0 i- C 5- 
FIGURE 4. Detail of the notation for the model problem of 52. 

study shows that the rotational component of the flow is O(E~%,,) (Kurosaka 1977). 
Thus, to the order of present interest, O(B,), the irrotational approximation suffices. 

2.1. Linearized unsteady anaE3;sis downstream of the shock 
The governing equation for the perturbed velocity potential 4’ is given by 

where t is the time, 

U ,  and a, are the upstream free-stream and acoustic velocities, respectively. 
m = ( M 2  a) - 1)1/2, M ,  = Urnlam, 

The boundary conditions are 

wheref(x, t )  is an arbitrary function of O(H,), which vanishes for x < 0. Upstream of 
the leading Mach wave emanating from point A (see figure 4), 

and hereafter our attention is focused on the upper half of the ‘duct ’. 
4’ = 0, x-m(a-r) < 0,  (4) 



368 M .  D. Fox and M .  Kurosaka 

We apply the Fourier transform in 1 and then the Laplace transform in x, using the 
Fourier transform defined by 

and the Laplace transform defined by 

Then equations (2) and (3) become 

where 

and 

d 2 -  I d -  
dr' r d r  
iQ+-----m'(s+z)(s+P)9" = 0, 

iw iw 
a, m' a,% m2 

a = --(MX--l) and ,8 = - ( ~ = + l j ,  

%$ = u,Y at r = a .  
a -  

A solution of (5 )  subject to (6) is given by 

(5) 

where I, and 1, are modified Bessel functions. For large values of s, which correspond 
to small values of x, the asymptotic form of I for r $. 0 yields 

By convolution, this may be inverted as 

where,fis the Laplace transform off,  J, is a Bessel function, and 

X = m(a-r). (9) 

In deriving the above, use is made of the fact that the inverse Laplace transform of 

exp { - Y K S  + 4 (s + P)11'2) 
[(s + a)  (s + /!?)]1/2 

is given (e.g. Erdelyi 1954) as 

H(x-y)exp [ -~(a+P)x~Io[~(a-P)(~2-~2)1'a], 

where H is the step function. By taking the inverse Fourier transform of (8), one 
obtains 
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FIGURE 6. Schematic of the zone of influence of signals from a source at point S. Wavelet 1 
originated at point S at time T~ and wavelet 2 originated at point S at time 7,. 

where [(x-,$)~ -m2((a- r)2]1’2 - 
1 

a ,  m2 
u=- 

1 

am m 

1 

r2 = t -7{~m(x-  6) - [(x - [ ) 2  -mz(a - r)a]1’2)3, 

71 = t-- {Mm(x-  [) + [(x- [)2- mya- r )2 ]1 ’2 ) .  and 

In inverting (X), the following integral is used: 

am nz2 

1 1; ‘OS (bh) 4(ah) dh = H ( l a l  - l b l >  ( a z  - b2)1/2 ’ 

The condition where the argument of the step function u becomes zero can be readily 
shown to be identical to 

[x- [- U,(t-r)]’ + (a-  r )2  = [a,(t - T ) ] ~ .  

This represents a front of a wavelet just passing an observation point (x, r )  at time 
t (see figure 5 ) ;  it originates at time 7 from a source point S located at 6 on r = a, and 
is convected downstream in the x-direction with velocity U,, while its radius is 
simultaneously increasing at a speed a,. The shape of the front is circular in the (x, r)- 
plane. Obviously, the zone of influence for any wavelet is inside its circular front; 
outside is its zone of silence. For a fixed observation point P and a fixed source 
point S, then, there are two values of 7 corresponding to two such limiting wavelets 
passing P at a given time t (figure 6) : they are 71 and r2 given in (1 1 b) and (1 1 c). 
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1 corresponds to the wavelet front, originated at time 71 and whose receding 
side intersects P at time t ,  while 2 corresponds to the one whose advancing side 
intersects P. 

Only those wavelets emitted during the time interval 7, < 7 < 72 affect P at time t ,  
which corresponds to the condition cr 0. Therefore, by replacing the integration 
limits for the second integral of (10) by 7, and 7,, H may be dropped and (10) becomes 

It is convenient to rewrite this, by integration by parts, as 

where arcsin is the inverse sine function. 
By taking the derivative with respect to x, we obtain 

where 

As shown in figure 4, x--X is the source point Q, corresponding to the intersection 
of the left-running Mach wave passing Pix, r)  with r = a ;  t corresponds to the time 
required for the wavefront of the signal, which originates from Q and propagates along 
the Mach wave, to reach P. 

2.2. Near-shock approximation 
Consider points near the leading Mach wave corresponding to 

x--x z 0. (14) 
Then, the second and third integrals in the brackets of (14) become negligible and one 
obtains 

Similarly, the radial component of the velocity may be written approximately as 

From (17) and (18), the component of the velocity normal to the leading Mach wave 
may be obtained as 
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where the subscript 2 denotes, for future reference, the downstream region of the 
leading Mach wave (see figure 4). The corresponding velocity component tangent to 
the leading Mach wave is given by 

The corresponding expression for (a/&) I$‘ is 
u;,z % 0. (20) 

This shows that for points near x--X z 0, the flow field is quasi-steady. Physically, 
this is due to the fact that near the leading Mach wave, the characteristic length scale 
is x--x .  Thus the reduced frequency based on x--X can become as small as one wants 
(Kurosaka 1974). Finally, the corresponding expression for the perturbed pressure is 
derived as 

From this, and recalling that our objective is to examine the influence of vortices, 
which is of course characterized by a pressure drop, we now takef, initially specified 
as an arbitrary radial component of the velocity, to be positive: 

f > O .  (23) 

2.3. Shock movement and total temperature change 
As shown in figure 3, we denote the region upstream of the leading oblique shock by 
region 1 and downstream by region 2. Take the coordinate system where the shock 
becomes normal. In the undisturbed state, the velocity components normal to the 
shock are un,l  and u , , ~ .  They are related by 

where M,, , = -Mm sin p,?, /3, being the shock angle. 
is added in region 2, 

the shock starts to move in such a way that in the moving-shock coordinate, the 
corresponding form of (24) applies. Upon linearization and combined with (19), the 
shock velocity normal to the undisturbed shock, ui, which is taken to be positive in the 
downstream direction, becomes 

With the condition in region 1 fixed, when a disturbance 

(It is also equal to Yt, where Y is the displacement of the shock measured normal to 
its steady position and taken to be positive in the downstream direction. Strictly 
speaking, in relating u$ toJ; we have to consider the local slope of the displaced shock, 
Y,, where (T is the distance measured along the steady shock. A detailed analysis shows, 
however, that in order to determine Y,,, one needs the velocity potential corresponding 
to U(e0,j. In view of this complexity, here we neglect Yn.) 

We next consider the total temperatures on both sides of the shock defined as 
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and 

In the shock-coordinate system, corresponding total temperatures on both sides of the 
shock are equal ; using this and upon linearization, combined with ut, I = ut, z, (20), (24) 
and (25), we obtain an expression for the difference in the total temperatures: 

where 

This, together with (23) and (25), is our central result. 

2.4. Postulate ,for shock movement 
The application of the foregoing results to the present problem calls for considerations 
such as (i) the azimuthal characterization of the vortical structures around the jet 
periphery, which in the analysis is assumed to be axisymmetric, and (ii) the formative 
development of the vortical structures and their interaction with shocks. 

First, regarding the presence of large-scale structures even in supersonic jets, 
Lepicovsky et a/. (1986) visually observed the convected movement of large-scale 
structures along the periphery of a jet at Mach number 1.4; in order to capture large- 
scale structures, not only did Lepicovsky et a/. acoustically excite the jet, but they also 
resorted to a unique laser-schlieren system utilizing a time-delayed trigger and 
photographic ensemble-averaging technique. Although the presence of large-scale 
structures in supersonic jets was definitively confirmed, such additional details of the 
large-scale structures as their azimuthal feature are unfortunately not available. 

In connection with this issue of the azimuthal dependence, theoretical studies have 
been conducted mostly in the context of supersonic jet noise, where the spatial 
evolution of axisymmetric and asymmetric modes is examined (Tam & Burton 1984; 
Ahuja et al. 1992). In particular, Ahuja et a?. show that the asymmetrical or helical 
modes become most dominant for jet Mach numbers over 1.3 (for a recent 
comprehensive review and bibliography of these and related topics, see Tam 1991). 

Seiner, Manning & Ponton (1986) addressed this question of azimuthal modes 
experimentally for an axisymmetric convergent-divergent nozzle designed for a Mach 
number of 2. Both from acoustic measurements and schlieren records of shock-cell 
movement, they deduced that at a lower Mach number of 1.56, the mode was indeed 
of the flapping type: a superposition of two equal but oppositely directed helical 
modes. At the higher Mach number of 1.8, however, schlieren records could not 
determine the preferred azimuthal structure, but from acoustic measurements this 
indeterminacy was found to be due to the coexistence of axisymmetric and helical 
modes. As the design Mach number was approached, axisymmetric modes became 
increasingly important. A similar dominance of axisymmetric modes over the helical 
modes at the design point was also found from acoustic measurements by Troutt & 
McLaughlin (1982) for an axisymmetric supersonic nozzle designed for a Mach 
number of 2.1, and by Suda, Manning & Kaji (1 993) for a rectangular nozzle designed 
for a Mach number of 1.8. 

Therefore it appears that even in supersonic jets the large-scale structures are indeed 
of the axisymmetric or vortex-ring type so long as the jets are operating near the design 
Mach number; this is the condition to which the foregoing analysis of linearized 
analysis is applicable. Let us then proceed to consider the formation process of the 
vortex rings and their interaction with shocks. 
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First, when the vorticity in the nozzle boundary layer starts to roll up and a vortex 
ring is initially formed at point A near the leading shock (see figure 3), the pressure at 
the vortex core starts to drop, and thereforefof equation (23) starts to increase from 
zero. Thus the shock starts to deviate from the ‘steady condition’, swinging in the 
downstream direction (p, of figure 3 decreases), and the total temperature decreases 
across the shock; the magnitude of the drop increases, according to equation (28), like 
l/r1lZ towards the jet centre. The latter is caused by the focusing effect of the leading 
disturbances convergingly beaming towards the duct centre, which increases the 
velocity of the shock movement there (although the singular behaviour at r = 0 is an 
apparent one associated with the asymptotic representation used in $2.1). 

As the vortex is convected in the downstream direction, it grows in size and its 
strength increases owing to the continuous supply of vorticity from the boundary 
layer; the pressure at its centre drops correspondingly. In response, the shock continues 
to swing in the downstream direction (1, of figure 3 decreases further), with its root 
attached to the nozzle lip. 

Naturally. this process continues only up to a certain point. When the vortex gains 
sufficient strength, the radially inward penetration of entrained ambient fluid induces 
an effect equivalent to the injection of a secondary fluid into the main supersonic 
stream; in that case, an oblique shock appears upstream of the injection. Here, 
similarly, the entrainment causes a re-emergence of the leading-edge shock along the 
‘steady’ position; at the same time, thc entrainment serves to sever (from the nozzle 
lip) the preceding shock, which has been swept in the downstream direction. The latter 
now starts to move with the travelling vortices. (Recently Suda et al. 1993 also detccted 
a similar downstream travel of the shocks corresponding to the third cell at a lower 
pressure ratio. This observation was made possible by their use of an ultra-high-speed 
camera combined with their particular choice of a plane jet; for a two-dimensional jet, 
the shock movement is visually enhanced by two-dimensional overlapping, while for 
axisymmetric jets, the lack of overlapping due to three-dimensionality would obscure 
the details of such movement.) 

After the re-emergence of the leading-edge shock, the process repeats itself. 
Although the temporal increase of static pressure associated with the re-emergence 
would induce instantaneous hot spots along the leading edge of the new shock, this 
would occur only for a short period, when compared to the longer time scale associated 
with the downstream motion of the shock. Thus as a time-average, the cooling phase 
associated with thc downstream movement of the shock dominates. 

If the above hypothesis is tenable, the decrease in time-averaged should appear 
only downstream of the steady position of the leading-edge shock. Thus when we plot 
the radial profiles of time-averaged & at a fixed x-location (say, starting from point Q 
of figure 4 and moving radially inward), the departure of 7; from its upstream value 
should be present only in the annular region between Q and B. From B to the 
centreline, should retain its upstream value. Furthermore, as the downstream 
distance x increases, the region where decreases from its upstream value should 
progressively mow inward; finally at point C, such a region reaches the jet centre. The 
experimental data to be presented in $ 3  confirm these expectations. 

It should be pointed out that the presumed appearance of the decreased region of 
without any presence of the increased region of does not violate the conservation of 
the flux of &, for the latter is always satisfied for a material body of the air, when 
viewed from the shock coordinate system. 
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FIGURE 7. Radial profiles of the total temperature for overexpanded jets. (a) P,/P, = 5.08, 
(b) P,/P, = 6.44, (c) P,/P, = 7.82. 
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FIGURE 8. Radial profiles of the total temperature for an overexpanded jet, drawn to scale, with 
the shock trajectory drawn for reference. (a) PJP, = 5.08, (b) &/Pa = 6.44. 

3. Measured ( q )  profiles for overexpanded free jets 
In the light of the results of the foregoing model analysis, experiments were carried 

out to obtain the total temperature profiles of a free jet emanating from a 
convergent-divergent nozzle. 

Utilizing the air jet facility described in Part 1, the time-averaged total temperature 
(TJ distribution in an overexpanded free jet was measured by traversing a United 
Sensor YCT-156 probe across the jet flow field. The probe has a spatial resolution 
estimated to be 0.025 cm. A Macintosh computer controls the probe position to an 
accuracy of 0.005 cm, and reads the temperature. A circular nozzle with a throat 
diameter of 2.54 cm was used for the tests; with an exhaust-to-throat area ratio of 1.69, 
it was designed for ideal expansion at a Mach number of 2, which corresponds to 
P,/P, = 7.82. During the tests, as stated before, the total temperature of the jet as 
measured in the upstream settling chamber is held constant and equal to the ambient 
temperature of T, = 21 "C (for other details, see Fox 1994). 

The results are presented in figure 7, where the radial profiles of ( T )  distributions 
are plotted at different downstream locations, x / d  (where d is the throat diameter) and 
three pressure ratios: (a) PJP, = 5.08, (6) Pu/Pa = 6.44, and (c) Po/P, = 7.82, the design 
condition. The last condition is close to the upper limit of the experimental rig and 
therefore no attempt was made to obtain the under-expanded jet data for a 
convergent-divergent nozzle. The pressure ratios of figures 7 (a) and 7(b),  corre- 
sponding to overexpanded jets, are high enough to avoid the occurrence of shock- 
induced flow separation within the nozzle (e.g. Summerfield, Foster & Swan 1954). 

Their gross features are similar to those of figure l(b), obtained for an 
underexpanded convergent nozzle. Valleys at the outer radial positions labelled 1 
correspond to the cooling caused by the vortex-induced separation of Part 1. In the 
near field, the secondary valleys at the smaller radial positions labelled 2 correspond 
to the cooling caused by the present shock-induced separation. The heating, or peaks 
that accompanied the valleys 1 of vortex-induced separation (see Part 1) is 
cancelled out, in this time average, by the presence of valleys 2. 
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FIGURE 9. Maximum cooling in the radial temperature profile us. rid. (a) P,/P, = 5.08, 
(b) &/Pa = 6.44, (c) &/Pa = 7.82. 
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As the downstream distance x increases, valleys 1 move radially outward as expected 
for vortex-induced q separation. When compared to their subsonic counterpart (Part 
1 ; O’Callaghan & Kurosaka 1993) the radial movement is slower owing to the slow 
enlargement of the outer edge of overexpanded jets. On the other hand, valleys 2 move 
progressively inward and eventually reach the jet centre, while the amount of cooling 
increases in a manner qualitatively consistent with the results of $2. When the valleys 
of q have coalesced at the centre, their values reach local minima at x / d  = 1 for (a) ,  
x / d  = 1.25 for (b), and x / d  = 1.5 for (c )  (there the cooling has reached local maxima). 

The cooling then decreases as x/d increases but a second local minimum of q 
appears again at the centre at x / d  = 3 for (a)  and (b), and at x / d  = 4 at (c) .  After this, 
the cooling starts to decrease once again. The reason why valleys 2 do not extend to 
the edge of the jet is, as mentioned just before, due to the cancelling effect of vortex- 
induced heating near the edge. (As already mentioned in $2, the predominant presence 
of cooling, which does not accompany much heating, does not violate the conservation 
of the flux of q, since a compensating adjustment by the density serves to conserve the 
flux.) The profiles were obtained by traversing the probe from left to right and the data 
seem to show an acceptable degree of radial symmetry. 

In what follows, we make a more detailed comparison. Figure 8 shows the details of 
the { T )  profiles in the near field. The shaded lines emanating from the nozzle lips are 
calculated shock trajectories at ‘steady’ conditions. These are obtained by constructing, 
for the given nozzle geometry, the expansion fans by the method of characteristics for 
axisymmetric flows, and then calculating the shock trajectories by shock-expansion fan 
interaction; the shock is treated as locally planar and boundary layer corrections are 
not applied for the nozzle. Note that (a )  all of the shock-induced T valleys are located 
radially outboard of the shock trajectories, (b) the shocks approximately intersect the 
radially innermost edges of the valleys of shock-induced cooling, and (c) the valleys 
coalesce at the jet centre slightly downstream of the shock-convergence point C, as 
expected. This feature appears to lend support to the hypothesis stated in 32. (The 
cause of the heating in a narrow region inboard of the shock-induced cooling, which 
is seen only at x / d  = 0.75 of case (a) and not elsewhere, is unknown.) The case shown 
in figure 7 (c),  which corresponds to the design condition, is obviously not amenable to 
such shock calculation and the observed persistence of shock-induced cooling for this 
case is considered to be due to the effect of the boundary layer and nozzle 
imperfections. 

Figure 9 shows the amount of shock-induced cooling, A(T), corresponding to 
the difference between and the lowest { K )  of valleys 2 for various x /d ,  plotted 
against their radial position r .  Also plotted are the theoretical curves corresponding to 
A( q)  K l/rl’’ obtained in $2, where their bases are taken to be the measured A( TJ 
at x / d  = 0.5. (Note that in figure 9, the absolute values of A(T)  are shown.) The 
agreement in trends appears to be favourable except at r = 0, which is of course an 
apparent singular point of the analytical expression. 

From the spatial periodicity of the shock pattern combined with the 1/r l i z  
behaviour, one would also expect the following: the second minimum of at the jet 
centre mentioned in connection with the data of figure 7 (e.g. at x / d  = 3.0 for figure 
7 a )  should correspond to the second intersection of the shocks at the jet centre, the 
point E of figure 3; here the shocks are the reflection of the leading-edge shocks at the 
jet boundary. The distance from the nozzle to such a point E in the middle of the 
second cell may be equal to approximately three times the distance to the intersection 
of the leading-edge shocks (point C of figure 8). For figure 7(a) ,  point C corresponds 
to x / d  = 0.9; point E would therefore be about 2.7, which is in fact close to the 
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previously noted position of the second minimum, x/d = 3.0. (In details, point E of 
figure 3 is the intersection of the expansion fans, D-F, with the jet centre, where D-F 
is the reflection of the leading-edge shock with the jet boundary. As the vortex is being 
formed at A, Ps of the leading-edge shock A-D decreases, and the Mach number in 
region 2 is reduced. Correspondingly, the Mach number in region 3 drops twice as 
much and this reduction causes the angle of the expansion fans, ye,  to increase. This 
results in a reduction of q.) 

Further downstream (e.g. x/d = 4 for figure 7a), the amount of shock-induced 
cooling at the jet centre is reduced and at the same time twin peaks of heating appear 
to flank them. This heating corresponds to the class C particle of a subsonic jet, 
discussed in Part 1 ; a single hump that would normally be present at the jet centre in 
a purely subsonic jet (figure 1 a )  is eroded into twin peaks by the shock-induced cooling, 
which took place upstream. 

4. Remarks on underexpanded jets 
In $1, we introduced our present topic by showing in figure l(b) the results of 

underexpanded jets discharging from a convergent nozzle. If we now return to those 
results and compare them with the results for overexpanded jets from a convergent-- 
divergent nozzle, presented in the preceding section as figure 7, the two are 
recognizably similar. This may not be so surprising because even in underexpanded 
jets, expansion waves which originally emanate from the nozzle lip reflect from the jet 
boundary as compression waves which coalesce into ‘intercepting’ shocks. These 
shocks, though their roots are not anchored at the nozzle lip, are also expected to 
generate shock-induced separation. More detailed quantitative investigation such as 
comparison with the analysis is beyond the scope of the present study. 

5. Conclusions 
Motivated by initially perplexing data obtained for a supersonic free jet, we have 

shown that unsteady interaction between shocks and vortical structures formed around 
the jet periphery can generate supersonic cooling. This shock-induced cooling is 
distinctly different from that previously observed for a subsonic jet : vortex-induced 
cooling. For a supersonic jet, the latter is found to coexist, and in some regions, 
compete with the former. A model problem for shock-induced cooling is formulated 
and analysed for overexpanded jets emanating from a convergent-divergent nozzle. Its 
results appear to compare favourably with the experimental data, supporting the 
proposed mechanism that the cooling is caused by the shock movement induced by the 
formation and convection of vortices: the bias towards a net effect of cooling is 
essentially a reflection of the fact that the growth and movement of the vortices take 
place in the downstream direction only. 

When an impingement plate is inserted, the shock-induced cooling would manifest 
itself as wall cooling, whose magnitude is significantly larger than the subsonic 
counterpart of Part 1 (Fox 1994). The shock-induced cooling is not limited to jets and 
it would occur whenever a shock is influenced by vortical structures. (The preliminary 
results for impinging supersonic jets, together with the earlier versions of free jet data 
accompanied by CFD results, were presented previously at the Symposium on Heat 
Transfer in Turbomachinery, Marathon, Greece, 1992.) 
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